Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance.

Identifieur interne : 003C51 ( Main/Exploration ); précédent : 003C50; suivant : 003C52

A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance.

Auteurs : Edgar Peiter [Royaume-Uni] ; Barbara Montanini ; Anthony Gobert ; Pai Pedas ; S Ren Husted ; Frans J M. Maathuis ; Damien Blaudez ; Michel Chalot ; Dale Sanders

Source :

RBID : pubmed:17494768

Descripteurs français

English descriptors

Abstract

Manganese toxicity is a major problem for plant growth in acidic soils, but cellular mechanisms that facilitate growth in such conditions have not been clearly delineated. Established mechanisms that counter metal toxicity in plants involve chelation and cytoplasmic export of the metal across the plasma or vacuolar membranes out of the cell or sequestered into a large organelle, respectively. We report here that expression of the Arabidopsis and poplar MTP11 cation diffusion facilitators in a manganese-hypersensitive yeast mutant restores manganese tolerance to wild-type levels. Microsomes from yeast expressing AtMTP11 exhibit enhanced manganese uptake. In accord with a presumed function of MTP11 in manganese tolerance, Arabidopsis mtp11 mutants are hypersensitive to elevated levels of manganese, whereas plants overexpressing MTP11 are hypertolerant. In contrast, sensitivity to manganese deficiency is slightly decreased in mutants and increased in overexpressing lines. Promoter-GUS studies showed that AtMTP11 is most highly expressed in root tips, shoot margins, and hydathodes, but not in epidermal cells and trichomes, which are generally associated with manganese accumulation. Surprisingly, imaging of MTP11-EYFP fusions demonstrated that MTP11 localizes neither to the plasma membrane nor to the vacuole, but to a punctate endomembrane compartment that largely coincides with the distribution of the trans-Golgi marker sialyl transferase. Golgi-based manganese accumulation might therefore result in manganese tolerance through vesicular trafficking and exocytosis. In accord with this proposal, Arabidopsis mtp11 mutants exhibit enhanced manganese concentrations in shoots and roots. We propose that Golgi-mediated exocytosis comprises a conserved mechanism for heavy metal tolerance in plants.

DOI: 10.1073/pnas.0609507104
PubMed: 17494768
PubMed Central: PMC1895984


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance.</title>
<author>
<name sortKey="Peiter, Edgar" sort="Peiter, Edgar" uniqKey="Peiter E" first="Edgar" last="Peiter">Edgar Peiter</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of York, PO Box 373, York YO10 5YW, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biology, University of York, PO Box 373, York YO10 5YW</wicri:regionArea>
<wicri:noRegion>York YO10 5YW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Montanini, Barbara" sort="Montanini, Barbara" uniqKey="Montanini B" first="Barbara" last="Montanini">Barbara Montanini</name>
</author>
<author>
<name sortKey="Gobert, Anthony" sort="Gobert, Anthony" uniqKey="Gobert A" first="Anthony" last="Gobert">Anthony Gobert</name>
</author>
<author>
<name sortKey="Pedas, Pai" sort="Pedas, Pai" uniqKey="Pedas P" first="Pai" last="Pedas">Pai Pedas</name>
</author>
<author>
<name sortKey="Husted, S Ren" sort="Husted, S Ren" uniqKey="Husted S" first="S Ren" last="Husted">S Ren Husted</name>
</author>
<author>
<name sortKey="Maathuis, Frans J M" sort="Maathuis, Frans J M" uniqKey="Maathuis F" first="Frans J M" last="Maathuis">Frans J M. Maathuis</name>
</author>
<author>
<name sortKey="Blaudez, Damien" sort="Blaudez, Damien" uniqKey="Blaudez D" first="Damien" last="Blaudez">Damien Blaudez</name>
</author>
<author>
<name sortKey="Chalot, Michel" sort="Chalot, Michel" uniqKey="Chalot M" first="Michel" last="Chalot">Michel Chalot</name>
</author>
<author>
<name sortKey="Sanders, Dale" sort="Sanders, Dale" uniqKey="Sanders D" first="Dale" last="Sanders">Dale Sanders</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17494768</idno>
<idno type="pmid">17494768</idno>
<idno type="doi">10.1073/pnas.0609507104</idno>
<idno type="pmc">PMC1895984</idno>
<idno type="wicri:Area/Main/Corpus">003B58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003B58</idno>
<idno type="wicri:Area/Main/Curation">003B58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003B58</idno>
<idno type="wicri:Area/Main/Exploration">003B58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance.</title>
<author>
<name sortKey="Peiter, Edgar" sort="Peiter, Edgar" uniqKey="Peiter E" first="Edgar" last="Peiter">Edgar Peiter</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of York, PO Box 373, York YO10 5YW, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biology, University of York, PO Box 373, York YO10 5YW</wicri:regionArea>
<wicri:noRegion>York YO10 5YW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Montanini, Barbara" sort="Montanini, Barbara" uniqKey="Montanini B" first="Barbara" last="Montanini">Barbara Montanini</name>
</author>
<author>
<name sortKey="Gobert, Anthony" sort="Gobert, Anthony" uniqKey="Gobert A" first="Anthony" last="Gobert">Anthony Gobert</name>
</author>
<author>
<name sortKey="Pedas, Pai" sort="Pedas, Pai" uniqKey="Pedas P" first="Pai" last="Pedas">Pai Pedas</name>
</author>
<author>
<name sortKey="Husted, S Ren" sort="Husted, S Ren" uniqKey="Husted S" first="S Ren" last="Husted">S Ren Husted</name>
</author>
<author>
<name sortKey="Maathuis, Frans J M" sort="Maathuis, Frans J M" uniqKey="Maathuis F" first="Frans J M" last="Maathuis">Frans J M. Maathuis</name>
</author>
<author>
<name sortKey="Blaudez, Damien" sort="Blaudez, Damien" uniqKey="Blaudez D" first="Damien" last="Blaudez">Damien Blaudez</name>
</author>
<author>
<name sortKey="Chalot, Michel" sort="Chalot, Michel" uniqKey="Chalot M" first="Michel" last="Chalot">Michel Chalot</name>
</author>
<author>
<name sortKey="Sanders, Dale" sort="Sanders, Dale" uniqKey="Sanders D" first="Dale" last="Sanders">Dale Sanders</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (drug effects)</term>
<term>Arabidopsis (cytology)</term>
<term>Arabidopsis (drug effects)</term>
<term>Arabidopsis (physiology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Biological Transport (drug effects)</term>
<term>Cation Transport Proteins (genetics)</term>
<term>Cation Transport Proteins (metabolism)</term>
<term>Diffusion (drug effects)</term>
<term>Gene Expression (drug effects)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Golgi Apparatus (drug effects)</term>
<term>Golgi Apparatus (metabolism)</term>
<term>Manganese (deficiency)</term>
<term>Manganese (metabolism)</term>
<term>Manganese (pharmacology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Insertional (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (drug effects)</term>
<term>Plant Shoots (metabolism)</term>
<term>Populus (physiology)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (effets des médicaments et des substances chimiques)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Appareil de Golgi (effets des médicaments et des substances chimiques)</term>
<term>Appareil de Golgi (métabolisme)</term>
<term>Arabidopsis (cytologie)</term>
<term>Arabidopsis (effets des médicaments et des substances chimiques)</term>
<term>Arabidopsis (physiologie)</term>
<term>Diffusion (effets des médicaments et des substances chimiques)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Gènes de plante (MeSH)</term>
<term>Manganèse (déficit)</term>
<term>Manganèse (métabolisme)</term>
<term>Manganèse (pharmacologie)</term>
<term>Mutagenèse par insertion (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (physiologie)</term>
<term>Pousses de plante (effets des médicaments et des substances chimiques)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Racines de plante (effets des médicaments et des substances chimiques)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Test de complémentation (MeSH)</term>
<term>Transport biologique (effets des médicaments et des substances chimiques)</term>
<term>Transporteurs de cations (génétique)</term>
<term>Transporteurs de cations (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Manganese</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cation Transport Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Arabidopsis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Arabidopsis</term>
<term>Biological Transport</term>
<term>Diffusion</term>
<term>Gene Expression</term>
<term>Golgi Apparatus</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Manganèse</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Appareil de Golgi</term>
<term>Arabidopsis</term>
<term>Diffusion</term>
<term>Expression des gènes</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Saccharomyces cerevisiae</term>
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
<term>Protéines d'Arabidopsis</term>
<term>Régions promotrices (génétique)</term>
<term>Transporteurs de cations</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cation Transport Proteins</term>
<term>Golgi Apparatus</term>
<term>Manganese</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Manganèse</term>
<term>Pousses de plante</term>
<term>Protéines d'Arabidopsis</term>
<term>Racines de plante</term>
<term>Transporteurs de cations</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Manganèse</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Manganese</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Genetic Complementation Test</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Insertional</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Mutagenèse par insertion</term>
<term>Phénotype</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Manganese toxicity is a major problem for plant growth in acidic soils, but cellular mechanisms that facilitate growth in such conditions have not been clearly delineated. Established mechanisms that counter metal toxicity in plants involve chelation and cytoplasmic export of the metal across the plasma or vacuolar membranes out of the cell or sequestered into a large organelle, respectively. We report here that expression of the Arabidopsis and poplar MTP11 cation diffusion facilitators in a manganese-hypersensitive yeast mutant restores manganese tolerance to wild-type levels. Microsomes from yeast expressing AtMTP11 exhibit enhanced manganese uptake. In accord with a presumed function of MTP11 in manganese tolerance, Arabidopsis mtp11 mutants are hypersensitive to elevated levels of manganese, whereas plants overexpressing MTP11 are hypertolerant. In contrast, sensitivity to manganese deficiency is slightly decreased in mutants and increased in overexpressing lines. Promoter-GUS studies showed that AtMTP11 is most highly expressed in root tips, shoot margins, and hydathodes, but not in epidermal cells and trichomes, which are generally associated with manganese accumulation. Surprisingly, imaging of MTP11-EYFP fusions demonstrated that MTP11 localizes neither to the plasma membrane nor to the vacuole, but to a punctate endomembrane compartment that largely coincides with the distribution of the trans-Golgi marker sialyl transferase. Golgi-based manganese accumulation might therefore result in manganese tolerance through vesicular trafficking and exocytosis. In accord with this proposal, Arabidopsis mtp11 mutants exhibit enhanced manganese concentrations in shoots and roots. We propose that Golgi-mediated exocytosis comprises a conserved mechanism for heavy metal tolerance in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17494768</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>07</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>104</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2007</Year>
<Month>May</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance.</ArticleTitle>
<Pagination>
<MedlinePgn>8532-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Manganese toxicity is a major problem for plant growth in acidic soils, but cellular mechanisms that facilitate growth in such conditions have not been clearly delineated. Established mechanisms that counter metal toxicity in plants involve chelation and cytoplasmic export of the metal across the plasma or vacuolar membranes out of the cell or sequestered into a large organelle, respectively. We report here that expression of the Arabidopsis and poplar MTP11 cation diffusion facilitators in a manganese-hypersensitive yeast mutant restores manganese tolerance to wild-type levels. Microsomes from yeast expressing AtMTP11 exhibit enhanced manganese uptake. In accord with a presumed function of MTP11 in manganese tolerance, Arabidopsis mtp11 mutants are hypersensitive to elevated levels of manganese, whereas plants overexpressing MTP11 are hypertolerant. In contrast, sensitivity to manganese deficiency is slightly decreased in mutants and increased in overexpressing lines. Promoter-GUS studies showed that AtMTP11 is most highly expressed in root tips, shoot margins, and hydathodes, but not in epidermal cells and trichomes, which are generally associated with manganese accumulation. Surprisingly, imaging of MTP11-EYFP fusions demonstrated that MTP11 localizes neither to the plasma membrane nor to the vacuole, but to a punctate endomembrane compartment that largely coincides with the distribution of the trans-Golgi marker sialyl transferase. Golgi-based manganese accumulation might therefore result in manganese tolerance through vesicular trafficking and exocytosis. In accord with this proposal, Arabidopsis mtp11 mutants exhibit enhanced manganese concentrations in shoots and roots. We propose that Golgi-mediated exocytosis comprises a conserved mechanism for heavy metal tolerance in plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Peiter</LastName>
<ForeName>Edgar</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of York, PO Box 373, York YO10 5YW, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Montanini</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gobert</LastName>
<ForeName>Anthony</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pedas</LastName>
<ForeName>Pai</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Husted</LastName>
<ForeName>Søren</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maathuis</LastName>
<ForeName>Frans J M</ForeName>
<Initials>FJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blaudez</LastName>
<ForeName>Damien</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chalot</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sanders</LastName>
<ForeName>Dale</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>EF453693</AccessionNumber>
<AccessionNumber>EF453694</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C520742">Mtp11 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004058" MajorTopicYN="N">Diffusion</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016254" MajorTopicYN="N">Mutagenesis, Insertional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17494768</ArticleId>
<ArticleId IdType="pii">0609507104</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0609507104</ArticleId>
<ArticleId IdType="pmc">PMC1895984</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1999 Sep 1;18(17):4733-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10469652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Dec;56(6):959-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 May;51(346):865-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Aug 1;579(19):4165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16038907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Mar;15(3):1382-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7862131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Sep;130(1):128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007 Apr 23;8:107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9995-10000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11481436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 25;280(12):11608-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15677451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 1997 Mar 15;156(2):99-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9075641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Nutr. 2004;24:151-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NMR Biomed. 2004 Dec;17(8):544-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15617053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jul;39(2):237-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Dec;15(12):2911-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Aug 31;1564(2):299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12175911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1992 Jun;3(6):633-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1379856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):733-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Jul;45(1):145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12100555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):125-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):1047-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):825-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jun 30;1744(2):93-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 May;267(10):3090-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 May;40(1):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10394943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(5):861-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 May;15(5):1131-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12724539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 May;9(5):1149-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9571246</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Blaudez, Damien" sort="Blaudez, Damien" uniqKey="Blaudez D" first="Damien" last="Blaudez">Damien Blaudez</name>
<name sortKey="Chalot, Michel" sort="Chalot, Michel" uniqKey="Chalot M" first="Michel" last="Chalot">Michel Chalot</name>
<name sortKey="Gobert, Anthony" sort="Gobert, Anthony" uniqKey="Gobert A" first="Anthony" last="Gobert">Anthony Gobert</name>
<name sortKey="Husted, S Ren" sort="Husted, S Ren" uniqKey="Husted S" first="S Ren" last="Husted">S Ren Husted</name>
<name sortKey="Maathuis, Frans J M" sort="Maathuis, Frans J M" uniqKey="Maathuis F" first="Frans J M" last="Maathuis">Frans J M. Maathuis</name>
<name sortKey="Montanini, Barbara" sort="Montanini, Barbara" uniqKey="Montanini B" first="Barbara" last="Montanini">Barbara Montanini</name>
<name sortKey="Pedas, Pai" sort="Pedas, Pai" uniqKey="Pedas P" first="Pai" last="Pedas">Pai Pedas</name>
<name sortKey="Sanders, Dale" sort="Sanders, Dale" uniqKey="Sanders D" first="Dale" last="Sanders">Dale Sanders</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Peiter, Edgar" sort="Peiter, Edgar" uniqKey="Peiter E" first="Edgar" last="Peiter">Edgar Peiter</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003C51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17494768
   |texte=   A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17494768" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020